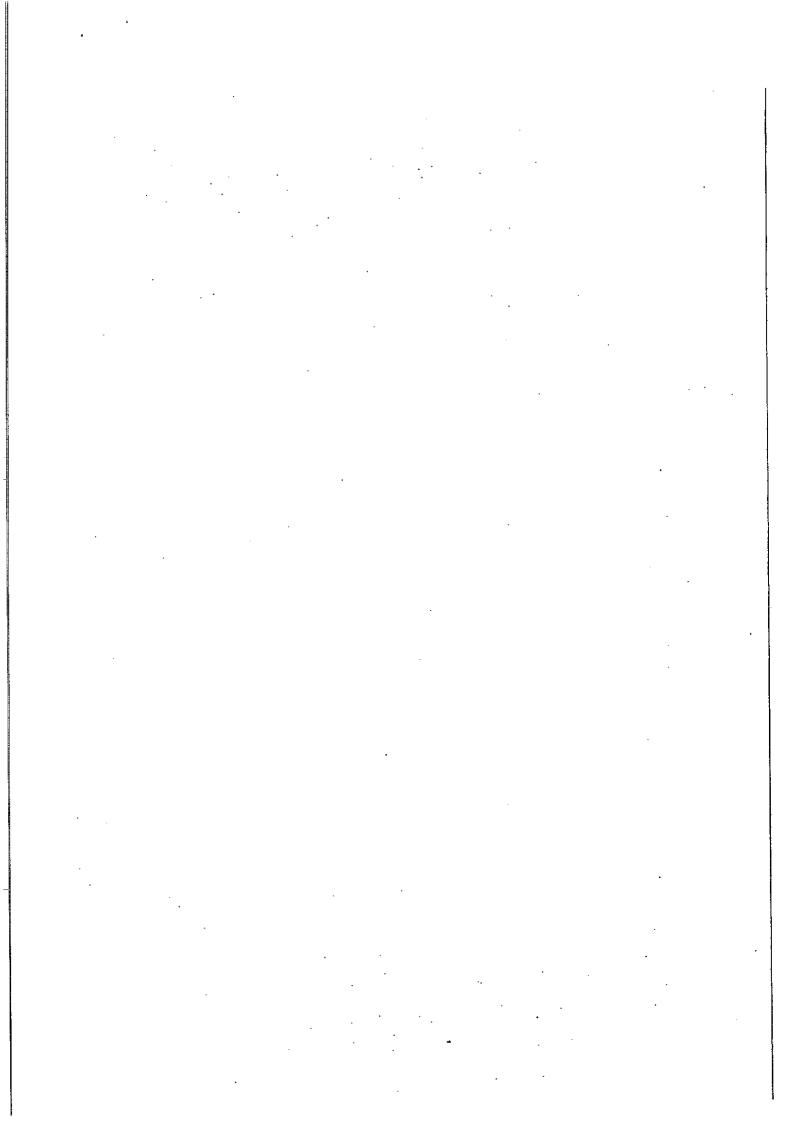


higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T1051(E)(N23)T NOVEMBER 2010


NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N1

(8080641)

23 November (X-Paper) 09:00 – 12:00

This question paper consists of 5 pages and a formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
INDUSTRIAL ELECTRONICS N1
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

1.1	State THREE factors that determine the strength of an electromagnet.		
1.2	Draw a sine wave and show the peak-to-peak value on the sine wave.		
1.3	State ONE advantage of the following:		
	1.3.1 1.3.2	Primary cells Secondary cells	(1) (1)
1.4	State TWO disadvantages of the following:		
	1.4.1 1.4.2	Primary cells Secondary cells	(2) (2)

1.5 Refer to FIGURE 1 and calculate the value of the load resistor, RL.

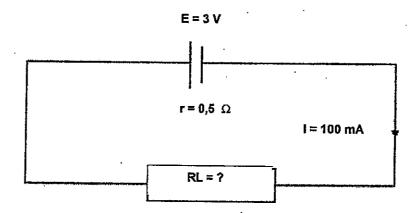


FIGURE 1

(4) Choose the correct word(s) from those given in brackets. Write only the 1.6 word(s) next to the question number (1.6.1 - 1.6.10) in the ANSWER BOOK. Magnetic lines of force flow from (N - S/S - N) inside a bar magnet. 1.6.1 (1) 1.6.2 Like poles (attract/repel) each other. (1) 1.6.3 A capacitor will (block/pass) direct current. (1) 1.6.4 Capacitors connected in parallel (increase/decrease) the total capacitance. (1) If a neutral atom gains electrons, it becomes a (negative/positive) 1.6.5 ion. (1) 1.6.6 Holes are (negative/positive) charge carriers. (1) 1.6.7 A transistor can be used as (an electronic switch/a relay). (1) 1.6.8 A transistor is made of (three/two) elements. (1) 1.6.9 The junction voltage of a silicon diode is (0,2 V/0,6 V). (1) An anode of a diode is formed from (N/P) type semi-conductors. 1.6.10 (1) [25]

QUESTION 2

2.1	A copper conductor is 150 m long and has a cross-sectional area of 6 mm ⁻ . The resistivity of copper is $1,728 \times 10^{-6}$ Ω m. Determine the resistance of the conductor.			
2.2	A tube filled with mercury has a resistance of 9 Ω at 0 °C. If the tube is heated up to 25 °C, what will be the mercury resistance? Take the coefficient of resistance of mercury as 0,0042 Ω /°C.			
2.3	FOUR resistors with values of 72 Ω , 36 Ω , 24 Ω and 12 Ω respectively are connected in parallel across a 30 V DC supply.			
	2.3.1	Sketch the complete circuit diagram.	(1)	
	Calculate the following:			
	2.3.2	The total resistance of the circuit	(4)	
	2.3.3	The total current flow through the circuit	(3)	
	2.3.4	The voltage drop across the 36 Ω resistance	(1)	
	2.3.5	The power consumed by the 24 Ω resistance	(4)	
	2.3.6	The colour code for the 72 Ω resistor with a tolerance of 10%	(4)	
2.4	Make a s (RL), in a	ketch to illustrate how a voltmeter is connected over a load resistor circuit.	(2) [25]	
QUESTI	ON 3			
3.1	Three capacitors with values of 3 μF , 6 μF and 9 μF respectively are connected in series.			
	Calculate the following:			
	3.1.1 3.1.2	The total capacitance of the circuit The charge across the circuit with an applied voltage of 1 kV	(4) (3)	
3.2	Sketch the IEC symbols of the following components:			
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	A diode An N-P-N transistor An inductor A transformer A variable resistor An electrolytic capacitor A saw-tooth wave	(1) (1) (1) (1) (1) (1)	

3.3	Describe the effect that a diode will have on a direct current.				
3.4	Describe the effect that the following components will have on an alternaticurrent:				
	3.4.1 3.4.2	A transformer A diode	•	(2) (2)	
3.5	Explain what effect the following will have on the resistance of a conductor:				
•	3.5.1 3.5.2 3.5.3	The length of the conductor The cross-sectional area of the conductor The temperature of the conductor		(2) (2) (2) [25]	
QUEST	TION 4	•		•	
4.1		mary voltage of a transformer is 220 V and the secondary alculate the secondary current if the primary current is 4 mA.		(4)	
4.2	Name the type of transformer in QUESTION 4.1.		(1)		
4.3	Show, by means of a sketch, the construction of a P-N-P transistor.				
4.4	State Lenz's law.			(3)	
4.5	State THREE factors that determine the capacitance of a capacitor.				
4.6	State FOUR advantages of a digital multimeter.			(4)	
4.7	Describe a P-type semi-conductor material.			(2)	
4.8	Construct a half-wave rectifier circuit.			(3)	
4.9	Sketch t	he input and output wave forms of the circuit in QUESTION	4.8.	(2) [25]	
		•	TOTAL:	100	

INDUSTRIAL ELECTRONICS N1

FORMULA SHEET

$$I = \frac{V}{R}$$

$$I = \frac{E}{R + r}$$

$$P = V \times I$$

$$R_t = R_1 + R_2 + \dots + R_n$$

$$\frac{1}{R_t} = \frac{1}{R_I} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$C_t = C_1 + C_2 + \dots + C_n$$

$$\frac{1}{C_t} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

$$Q = C \times V$$

$$L_l = L_l + L_2 + \dots + L_n$$

$$\frac{1}{L_1} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p}$$

$$R_{t} = R_{o}(1 + \alpha_{o}t)$$

$$R = \frac{\rho \ell}{A}$$